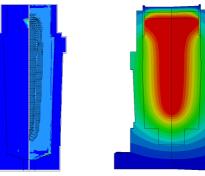
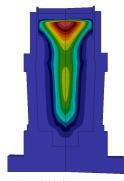


is an advanced simulation software designed to evaluate metallurgical evolution during casting of ingots or in continuous casting. It supports the ingot elaboration and process optimisation in steel industry.

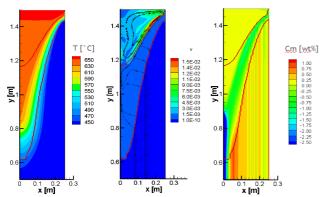

Carbon segreg (%)

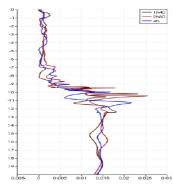
« General purpose for better return **investment** » Alloys are freely defined during simulation preparation. Solid is therefore suitable for a large set of ingots types. Included, a configuration of thermal exchanges and molding materials.


« Fully integrated for a fast learning curve » Geometry and meshing are defined with a single graphical interface. Process conditions are defined using a simple keywords set.

« Advanced models for a predictive simulation » Physical models activations are scalable to run from the simpliest and more rapid simulation to the more sophisticated thermometallurgical configurations.

« Large set of results for an indeep analysis » From well known local solidification time to more specific micro & macro segregations, engineers access to the subtle metallurgical states.




Local solidification time

Velocity field Control the Process to Control the Product

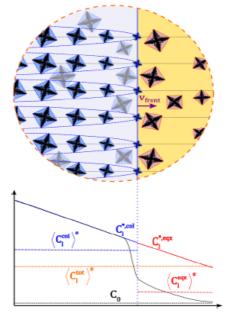
0 40 80

Continuous casting

Results are computed over time. The effects of sprays are considered by thermal exchanges at boundaries conditions. Large set of results about segregations, liquid well depth, etc...

Selection of needed precision

Physics complexity is supported by several computing profiles, giving access to specific solidifications phenomena. Therefore, most of these phenomena can be deactivated if desired.


olid: The future of solidification's simulation

The Solid software is involved in several R&D projects in order to continue his development. These projects with industrial and research partners allow Solid to beneficiate of last innovations concerning physic models in solidification, including:

- Germination
- Fragmentation
- Grains growth
- Grains motion
- Columnar-Equiaxed Transition

Institut Jean Lamour

Control the Process to Control the Product

Based on a 30-year experience, SCC is your partner in manufacturing processes optimization with applied engineering simulation solutions.

Continuous innovation brought by our R&D collaborations and activity provide our customers the most suitable and efficient process simulation solutions.

Sciences Computers Consultants Headquarter
10 rue du plateau des glières
F-42000 Saint Etienne France
+33 4 77 49 75 80
scc@scconsultants.com
http://www.scconsultants.com

Sciences Computers Consultants Inc. 1455 rue Drummond, Bureau 2B Montréal (Québec) H3G 1W3 +1 (514) 687 4708 scc-mtl@scconsultants.com http://www.scconsultants.com